134 research outputs found

    The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima

    Get PDF
    Genotype-phenotype (GP) maps specify how the random mutations that change genotypes generate variation by altering phenotypes, which, in turn, can trigger selection. Many GP maps share the following general properties: 1) The number of genotypes NGN_G is much larger than the number of selectable phenotypes; 2) Neutral exploration changes the variation that is accessible to the population; 3) The distribution of phenotype frequencies Fp=Np/NGF_p=N_p/N_G, with NpN_p the number of genotypes mapping onto phenotype pp, is highly biased: the majority of genotypes map to only a small minority of the phenotypes. Here we explore how these properties affect the evolutionary dynamics of haploid Wright-Fisher models that are coupled to a simplified and general random GP map or to a more complex RNA sequence to secondary structure map. For both maps the probability of a mutation leading to a phenotype pp scales to first order as FpF_p, although for the RNA map there are further correlations as well. By using mean-field theory, supported by computer simulations, we show that the discovery time TpT_p of a phenotype pp similarly scales to first order as 1/Fp1/F_p for a wide range of population sizes and mutation rates in both the monomorphic and polymorphic regimes. These differences in the rate at which variation arises can vary over many orders of magnitude. Phenotypic variation with a larger FpF_p is therefore be much more likely to arise than variation with a small FpF_p. We show, using the RNA model, that frequent phenotypes (with larger FpF_p) can fix in a population even when alternative, but less frequent, phenotypes with much higher fitness are potentially accessible. In other words, if the fittest never `arrive' on the timescales of evolutionary change, then they can't fix. We call this highly non-ergodic effect the `arrival of the frequent'.Comment: full paper plus supplementary material

    Effect of bending rigidity on the knotting of a polymer under tension

    Full text link
    A coarse-grained computational model is used to investigate how the bending rigidity of a polymer under tension affects the formation of a trefoil knot. Thermodynamic integration techniques are applied to demonstrate that the free-energy cost of forming a knot has a minimum at non-zero bending rigidity. The position of the minimum exhibits a power-law dependence on the applied tension. For knotted polymers with non-uniform bending rigidity, the knots preferentially localize in the region with a bending rigidity that minimizes the free-energy.Comment: 15 pages, 6 figures. Corrected problem with references to equation

    Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks

    Get PDF
    We show that numerical approximations of Kolmogorov complexity (K) applied to graph adjacency matrices capture some group-theoretic and topological properties of graphs and empirical networks ranging from metabolic to social networks. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We show that approximations of K characterise synthetic and natural networks by their generating mechanisms, assigning lower algorithmic randomness to complex network models (Watts-Strogatz and Barabasi-Albert networks) and high Kolmogorov complexity to (random) Erdos-Renyi graphs. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) measure, based on algorithmic probability theory.Comment: 15 2-column pages, 20 figures. Forthcoming in Physica A: Statistical Mechanics and its Application

    Robustness and Stability of Spin Glass Ground States to Perturbed Interactions

    Full text link
    Across many scientific and engineering disciplines, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we study the robustness of the ground states of ±J\pm J spin glasses on random graphs to flips of the interactions. For a sparse graph, a dense graph, and the fully connected Sherrington-Kirkpatrick model, we find relatively large sets of interactions that generate the same ground state. These sets can themselves be analyzed as sub-graphs of the interaction domain, and we compute many of their topological properties. In particular, we find that the robustness of these sub-graphs is much higher than one would expect from a random model. Most notably, it scales in the same logarithmic way with the size of the sub-graph as has been found in genotype-phenotype maps for RNA secondary structure folding, protein quaternary structure, gene regulatory networks, as well as for models for genetic programming. The similarity between these disparate systems suggests that this scaling may have a more universal origin

    Modelling the Self-Assembly of Virus Capsids

    Full text link
    We use computer simulations to study a model, first proposed by Wales [1], for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe more complex assembly dynamics than that seen for the original T = 1 model.Comment: 16 pages, 11 figure

    Force-induced rupture of a DNA duplex

    Full text link
    The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex within a given experiment depends strongly on the time scale of observation. We use simple models of DNA to demonstrate that this approach naturally captures the experimentally observed dependence of the critical force on duplex length for a given observation time. In particular, the critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. Additionally, motivated by a recently proposed force sensor, we investigate application of stress to a duplex in a mixed mode that interpolates between shearing and unzipping. As with pure shearing, the critical force depends on the time scale of observation; at a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.Comment: 10 pages, 6 figure

    Zigzag transitions and nonequilibrium pattern formation in colloidal chains

    Full text link
    Paramagnetic colloidal particles that are optically trapped in a linear array can form a zigzag pattern when an external magnetic field induces repulsive interparticle interactions. When the traps are abruptly turned off, the particles form a nonequilibrium expanding pattern with a zigzag symmetry, even when the strength of the magnetic interaction is weaker than that required to break the linear symmetry of the equilibrium state. We show that the transition to the equilibrium zigzag state is always potentially possible for purely harmonic traps. For anharmonic traps that have a finite height, the equilibrium zigzag state becomes unstable above a critical anharmonicity. A normal mode analysis of the equilibrium line configuration demonstrates that increasing the magnetic field leads to a hardening and softening of the spring constants in the longitudinal and transverse directions, respectively. The mode that first becomes unstable is the mode with the zigzag symmetry, which explains the symmetry of nonequilibrium patterns. Our analytically tractable models help to give further insight into the way that the interplay of such factors as the length of the chain, hydrodynamic interactions, thermal fluctuations affect the formation and evolution of the experimentally observed nonequilibrium patterns.Comment: 16 pages, 8 figures; to appear in the Journal of Chemical Physic

    Evolutionary Dynamics in a Simple Model of Self-Assembly

    Full text link
    We investigate the evolutionary dynamics of an idealised model for the robust self-assembly of two-dimensional structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that drive the self-assembly process. The relationship between the model's rule set and its resulting self-assembled structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets evolve under selection for specified target structures. The corresponding, complex fitness landscape generates rich evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate, and method of recombination. Furthermore, these systems are simple enough that in some cases the associated model genome space can be completely characterised, shedding light on how the evolutionary dynamics depends on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the preference for dihedral over cyclic symmetry observed for homomeric protein tetramers
    • …
    corecore